[高级难度真题]多少种方法_六年级-查字典奥数网
 
请输入您要查询的关键词

[高级难度真题]多少种方法

2010-04-21 09:39:42     标签:工程问题

解析:为了解决这个问题,我们设1995可以表示为以a为首项的k(k>1)个连续自然数之和。首项是a,项数为k,末项就是a+k-1,由等差数列求和公式,得到,化简为

注意,上式等号左边的两个因数中,第一个因数2a+k-1大于第二个因数k,并且两个因数必为一奇一偶。因此,3990有多少个大于1的奇约数,3990就有多少种形如(*)式的分解式,也就是说,1995就有多少种表示为两个或两个以上连续自然数之和的方法。因为1995与3990的奇约数完全相同,所以上述说法可以简化为,1995有多少个大于1的奇约数,1995就有多少种表示为两个或两个以上连续自然数之和的方法。

1995=3×5×7×19,共有15个大于1的奇约数,所以本题的答案是15种。

点击显示
上一篇:六年级奥数难题(2010.4.21):工程问题
下一篇:[中级难度真题]求自然数之和
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
热门文章
最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •   [高级难度真题]多少种方法_六年级-查字典奥数网
     
    请输入您要查询的关键词

    [高级难度真题]多少种方法

    2010-04-21 09:39:42     标签:工程问题

    解析:为了解决这个问题,我们设1995可以表示为以a为首项的k(k>1)个连续自然数之和。首项是a,项数为k,末项就是a+k-1,由等差数列求和公式,得到,化简为

    注意,上式等号左边的两个因数中,第一个因数2a+k-1大于第二个因数k,并且两个因数必为一奇一偶。因此,3990有多少个大于1的奇约数,3990就有多少种形如(*)式的分解式,也就是说,1995就有多少种表示为两个或两个以上连续自然数之和的方法。因为1995与3990的奇约数完全相同,所以上述说法可以简化为,1995有多少个大于1的奇约数,1995就有多少种表示为两个或两个以上连续自然数之和的方法。

    1995=3×5×7×19,共有15个大于1的奇约数,所以本题的答案是15种。

    点击显示
    上一篇:六年级奥数难题(2010.4.21):工程问题
    下一篇:[中级难度真题]求自然数之和
    推荐文章
    猜你喜欢
    附近的人在看
    推荐阅读
    拓展阅读
    相关文章
    热门文章
    最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •