四年级奥数题及答案:数阵图
1.下图是10枚硬币,移动其中1枚硬币,使每一行上都有6枚硬币。
2.将1~7这七个数分别填入左下图中的○里,使每条直线上的三个数之和都等于12。
如果每条直线上的三个数之和等于10,那么又该如何填?
四年级奥数题答案
1.分析与解: 10枚硬币摆两行,一般来说每行有10÷2=5(枚)。图中的两行却是一行5枚一行6枚,原因是中间有1枚在两行的交叉点上,所以出现了5+6>10。由于题中并没有规定每个位置上只准放一枚,所以,只要使其中1枚硬币在两直行的交叉点上再"重复"一下,即在两行的交叉点上重叠地放2枚硬币(见右上图),就可达到目的。
2.
【小结】数阵图中,中间的重叠数最重要。重叠数一般是要求填入数中的头中尾,本题的头中尾是1、4、7.所以要求每条线上为12,中间为4;要求得10的话,中间为1,假如题目再要求得14的话,那么中间就是7了。中间的重叠数确定好之后,两边的数就好填了,直接分组就可以了。
四年级奥数题及答案:数阵图
1.下图是10枚硬币,移动其中1枚硬币,使每一行上都有6枚硬币。
2.将1~7这七个数分别填入左下图中的○里,使每条直线上的三个数之和都等于12。
如果每条直线上的三个数之和等于10,那么又该如何填?
四年级奥数题答案
1.分析与解: 10枚硬币摆两行,一般来说每行有10÷2=5(枚)。图中的两行却是一行5枚一行6枚,原因是中间有1枚在两行的交叉点上,所以出现了5+6>10。由于题中并没有规定每个位置上只准放一枚,所以,只要使其中1枚硬币在两直行的交叉点上再"重复"一下,即在两行的交叉点上重叠地放2枚硬币(见右上图),就可达到目的。
2.
【小结】数阵图中,中间的重叠数最重要。重叠数一般是要求填入数中的头中尾,本题的头中尾是1、4、7.所以要求每条线上为12,中间为4;要求得10的话,中间为1,假如题目再要求得14的话,那么中间就是7了。中间的重叠数确定好之后,两边的数就好填了,直接分组就可以了。