五年级奥数题及解析:约数倍数问题(高等难度)_奥数数论问题_奥数知识点-查字典奥数网
 
请输入您要查询的关键词

五年级奥数题及解析:约数倍数问题(高等难度)

2013-12-05 12:57:50     标签:约数倍数

例题1.若a,b,c是三个互不相等的大于0的自然数,且a+b+c=1155,则它们的最大公约数的最大值为(),最小公倍数的最小值为(),最小公倍数的最大值为()

约数倍数答案:

解答:165、660、57065085

1)由于a+b+c=1155,而1155=3×5×7×11。令a=mp,b=mq,c=ms.m为a,b,c的最大公约数,则p+q+s最小取7。此时m=165.

2)为了使最小公倍数尽量小,应使三个数的最大公约数m尽量大,并且使A,B,C的最小公倍数尽量小,所以应使m=165,A=1,B=2,C=4,此时三个数分别为165,330,660,它们的最小公倍数为660,所以最小公倍数的最小值为660。

3)为了使最小公倍数尽量小,应使三个数两两互质且乘积尽量大。当三个数的和一定时,为了使它们的乘积尽量大,应使它们尽量接近。由于相邻的自然数是互质的,所以可以令1155=384+385+386,但是在这种情况下384和386有公约数2,而当1155=383+385+387时,三个数两两互质,它们的最小公倍数为383×385×387=57065085,即最小公倍数的最大值为57065085。

点击显示
上一篇:六年级奥数题及解析:约数倍数
下一篇:五年级数论:最大公约数试题及详解
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
热门文章
最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •   五年级奥数题及解析:约数倍数问题(高等难度)_奥数数论问题_奥数知识点-查字典奥数网
     
    请输入您要查询的关键词

    五年级奥数题及解析:约数倍数问题(高等难度)

    2013-12-05 12:57:50     标签:约数倍数

    例题1.若a,b,c是三个互不相等的大于0的自然数,且a+b+c=1155,则它们的最大公约数的最大值为(),最小公倍数的最小值为(),最小公倍数的最大值为()

    约数倍数答案:

    解答:165、660、57065085

    1)由于a+b+c=1155,而1155=3×5×7×11。令a=mp,b=mq,c=ms.m为a,b,c的最大公约数,则p+q+s最小取7。此时m=165.

    2)为了使最小公倍数尽量小,应使三个数的最大公约数m尽量大,并且使A,B,C的最小公倍数尽量小,所以应使m=165,A=1,B=2,C=4,此时三个数分别为165,330,660,它们的最小公倍数为660,所以最小公倍数的最小值为660。

    3)为了使最小公倍数尽量小,应使三个数两两互质且乘积尽量大。当三个数的和一定时,为了使它们的乘积尽量大,应使它们尽量接近。由于相邻的自然数是互质的,所以可以令1155=384+385+386,但是在这种情况下384和386有公约数2,而当1155=383+385+387时,三个数两两互质,它们的最小公倍数为383×385×387=57065085,即最小公倍数的最大值为57065085。

    点击显示
    上一篇:六年级奥数题及解析:约数倍数
    下一篇:五年级数论:最大公约数试题及详解
    推荐文章
    猜你喜欢
    附近的人在看
    推荐阅读
    拓展阅读
    相关文章
    热门文章
    最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •