二年级下册第三讲 速算与巧算 习题答案_二年级-查字典奥数网
 
请输入您要查询的关键词

二年级下册第三讲 速算与巧算 习题答案

2011-07-20 15:45:17     标签:速算与巧算

1.解:4×135×25=(4×25)×135

=100×135=13500.

2.解:38×25×6=19×2×25×2×3

=19×(2×25×2)×3

=19×100×3

=1900×3=5700.

3.解:124×25=(124÷4)×(25×4)

=31×100=3100.

4.解:132476×111

=132476×(100+10+1)

=13247600+1324760+132476

=14704836.

或用错位相加的方法:

5.解:35×53+47×35=35×(53+47)

=35×100=3500.

6.解:53×46+71×54+82×54

=(54-1)×46+71×54+82×54

=54×46-46+71×54+82×54

=54×(46+71+82)-46

=54×199-46

=54×(200-1)-46

=54×200-54-46

=10800-100

=10700.

7.解:①11×11=121

②111×111=12321

③1111×1111=1234321

④11111×11111=123454321

⑤111111111×111111111

=12345678987654321.

8.解:①12×14=12×(10+4)

=12×10+12×4

=12×10+(10+2)×4

=12×10+10×4+2×4 多次运用乘法分配

=(12+4)×10+2×4 律(或提公因数)

=160+8

=168

②13×17=13×(10+7)

=13×10+13×7 多次运用乘法分配

=13×10+(10+3)×7 律(或提公因数)

=13×10+10×7+3×7

=(13+7)×10+3×7

=200+21

=221

发现规律:求十几乘以十几的积的速算方法是:用一个数加上另一个数的个位数,乘以10(即接着添个“0”),再加上它们个位数字的积.

用这个方法计算下列各题:

③15×17=(15+7)×10+5×7

=220+35=255

④17×18=(17+8)×10+7×8

=250+56=306

⑤19×15=240+45=285

⑥16×12=180+12=192.

9.解:作为十几乘以十几的特例,以下各小题的结果请牢牢记住:

10.解:①15×15 注意矩形框中

=15×(10+5) 式子

=15×10+15×5

=15×10+(10+5)×5

=15×10+10×5+5×5

=(15+5)×10+5×5

=

=225

②25×25

=25×(20+5)

=25×20+25×5

=25×20+(20+5)×5

=25×20+20×5+5×5

=(25+5)×20+5×5 注意矩形框中

= 式子

=625

发现规律:几十五的自乘积就是十位数字和十位数字加1的积,再在其后写上25.

如15×15的积就是1×2再写上25得225.

25×25的积就是2×3再写上25得625.

用这个方法写出其他各题的答案如下:

③35×35=3×4×100+25=1225

④45×45=4×5×100+25=2025

⑤55×55=5×6×100+25=3025

⑥65×65=6×7×100+25=4225

⑦75×75=7×8×100+25=5625

⑧85×85=8×9×100+25=7225

⑨95×95=9×10×100+25=9025

要牢记以上方法和结果.要知道,孤立的一道题不好记,但有规律的一整套的东西反而容易记住!

11.解:有的同学问:“n是几?”

老师告诉你:“n就是末项,你说是几就是几”.用头尾相加法求,自然数列的前n项之和.

12.解:请注意规律性的东西.

①1+2+3+…+10

=(1+10)×10÷2=55

②1+2+3+…+100

=(1+100)×100÷2=5050

③1+2+3+…+1000

=(1+1000)×1000÷2=500500

④1+2+3+…+10000

=(1+10000)×10000÷2=50005000.

13.解:方法1:仔细观察不难发现把每列(或每行)的10个数相加之和按顺序排列起来构成一个等差数列,它就是:

55,65,75,85,95,105,115,125,135,145

∴总和=(55+145)×10÷2=1000.

方法2:首先各行都按第一行计数,得10行10列数字方阵的所有数之和为55×10=550.但第二行比第一行多10,第三行比第一行多20,…,第十行比第一行多90.总计共多:

10+20+30+40+50+60+70+80+90=450.

所以原题数字方阵的所有数相加之和为:

550+450=1000.

方法3:仔细观察可发现,若以数字10所在的对角线为分界线,将该数字方阵折叠之后,它就变成下述的三角形阵(多么巧妙!)

20 20 20 20 20 20 20 20 20 10

20 20 20 20 20 20 20 20 10

20 20 20 20 20 20 20 10

20 20 20 20 20 20 10

20 20 20 20 20 10

20 20 20 20 10

20 20 20 10

20 20 10

20 10

10

总和=20×(1+2+3+4+5+6+7+8+9+10)-100

=20×55-100

=1000.

方法4:找规律,先从简单情况开始

可见原来数字方阵的所有数的和=10×10×10=1000.看!方法多么简捷;数学多么微妙!

点击显示
上一篇:二年级下册第四讲 数与形相映
下一篇:二年级下册第三讲 速算与巧算 习题
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
热门文章
最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •   二年级下册第三讲 速算与巧算 习题答案_二年级-查字典奥数网
     
    请输入您要查询的关键词

    二年级下册第三讲 速算与巧算 习题答案

    2011-07-20 15:45:17     标签:速算与巧算

    1.解:4×135×25=(4×25)×135

    =100×135=13500.

    2.解:38×25×6=19×2×25×2×3

    =19×(2×25×2)×3

    =19×100×3

    =1900×3=5700.

    3.解:124×25=(124÷4)×(25×4)

    =31×100=3100.

    4.解:132476×111

    =132476×(100+10+1)

    =13247600+1324760+132476

    =14704836.

    或用错位相加的方法:

    5.解:35×53+47×35=35×(53+47)

    =35×100=3500.

    6.解:53×46+71×54+82×54

    =(54-1)×46+71×54+82×54

    =54×46-46+71×54+82×54

    =54×(46+71+82)-46

    =54×199-46

    =54×(200-1)-46

    =54×200-54-46

    =10800-100

    =10700.

    7.解:①11×11=121

    ②111×111=12321

    ③1111×1111=1234321

    ④11111×11111=123454321

    ⑤111111111×111111111

    =12345678987654321.

    8.解:①12×14=12×(10+4)

    =12×10+12×4

    =12×10+(10+2)×4

    =12×10+10×4+2×4 多次运用乘法分配

    =(12+4)×10+2×4 律(或提公因数)

    =160+8

    =168

    ②13×17=13×(10+7)

    =13×10+13×7 多次运用乘法分配

    =13×10+(10+3)×7 律(或提公因数)

    =13×10+10×7+3×7

    =(13+7)×10+3×7

    =200+21

    =221

    发现规律:求十几乘以十几的积的速算方法是:用一个数加上另一个数的个位数,乘以10(即接着添个“0”),再加上它们个位数字的积.

    用这个方法计算下列各题:

    ③15×17=(15+7)×10+5×7

    =220+35=255

    ④17×18=(17+8)×10+7×8

    =250+56=306

    ⑤19×15=240+45=285

    ⑥16×12=180+12=192.

    9.解:作为十几乘以十几的特例,以下各小题的结果请牢牢记住:

    10.解:①15×15 注意矩形框中

    =15×(10+5) 式子

    =15×10+15×5

    =15×10+(10+5)×5

    =15×10+10×5+5×5

    =(15+5)×10+5×5

    =

    =225

    ②25×25

    =25×(20+5)

    =25×20+25×5

    =25×20+(20+5)×5

    =25×20+20×5+5×5

    =(25+5)×20+5×5 注意矩形框中

    = 式子

    =625

    发现规律:几十五的自乘积就是十位数字和十位数字加1的积,再在其后写上25.

    如15×15的积就是1×2再写上25得225.

    25×25的积就是2×3再写上25得625.

    用这个方法写出其他各题的答案如下:

    ③35×35=3×4×100+25=1225

    ④45×45=4×5×100+25=2025

    ⑤55×55=5×6×100+25=3025

    ⑥65×65=6×7×100+25=4225

    ⑦75×75=7×8×100+25=5625

    ⑧85×85=8×9×100+25=7225

    ⑨95×95=9×10×100+25=9025

    要牢记以上方法和结果.要知道,孤立的一道题不好记,但有规律的一整套的东西反而容易记住!

    11.解:有的同学问:“n是几?”

    老师告诉你:“n就是末项,你说是几就是几”.用头尾相加法求,自然数列的前n项之和.

    12.解:请注意规律性的东西.

    ①1+2+3+…+10

    =(1+10)×10÷2=55

    ②1+2+3+…+100

    =(1+100)×100÷2=5050

    ③1+2+3+…+1000

    =(1+1000)×1000÷2=500500

    ④1+2+3+…+10000

    =(1+10000)×10000÷2=50005000.

    13.解:方法1:仔细观察不难发现把每列(或每行)的10个数相加之和按顺序排列起来构成一个等差数列,它就是:

    55,65,75,85,95,105,115,125,135,145

    ∴总和=(55+145)×10÷2=1000.

    方法2:首先各行都按第一行计数,得10行10列数字方阵的所有数之和为55×10=550.但第二行比第一行多10,第三行比第一行多20,…,第十行比第一行多90.总计共多:

    10+20+30+40+50+60+70+80+90=450.

    所以原题数字方阵的所有数相加之和为:

    550+450=1000.

    方法3:仔细观察可发现,若以数字10所在的对角线为分界线,将该数字方阵折叠之后,它就变成下述的三角形阵(多么巧妙!)

    20 20 20 20 20 20 20 20 20 10

    20 20 20 20 20 20 20 20 10

    20 20 20 20 20 20 20 10

    20 20 20 20 20 20 10

    20 20 20 20 20 10

    20 20 20 20 10

    20 20 20 10

    20 20 10

    20 10

    10

    总和=20×(1+2+3+4+5+6+7+8+9+10)-100

    =20×55-100

    =1000.

    方法4:找规律,先从简单情况开始

    可见原来数字方阵的所有数的和=10×10×10=1000.看!方法多么简捷;数学多么微妙!

    点击显示
    上一篇:二年级下册第四讲 数与形相映
    下一篇:二年级下册第三讲 速算与巧算 习题
    推荐文章
    猜你喜欢
    附近的人在看
    推荐阅读
    拓展阅读
    相关文章
    热门文章
    最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •