小升初数学列方程解应用题3_六年级-查字典奥数网
 
请输入您要查询的关键词

小升初数学列方程解应用题3

2009-08-27 15:52:59     标签:列方程解应用题

14.3 列不定方程解应用题

有些应用题,用代数方程求解,有时会出现所设未知数的个数多于所列方程的个数,这种情况下的方程称为不定方程。这时方程的解有多个,即解不是唯一确定的。但注意到题目对解的要求,有时,只需要其中一些或个别解。

例10 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推)。男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分。如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?

解:设该班有x个男生和y个女生,于是有

4x+3.25y=3.6(x+y),

化简后得8x=7y。从而全班共有学生

在大于30小于50的自然数中,只有45可被15整除,所以

推知x=21,y=24。

答:该班有21个男生和24个女生。

例11 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分。小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分。问:小明至多套中小鸡几次?

解:设套中小鸡x次,套中小猴y次,则套中小狗(10-x-y)次。根据得61分可列方程

9x+5y+2(10-x-y)=61,

化简后得7x=41-3y。

显然y越小,x越大。将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5。

答:小明至多套中小鸡5次。

例12 某缝纫社有甲、乙、丙、丁4个小组,甲组每天能缝制8件上衣或10条裤子;乙组每天能缝制9件上衣或12条裤子;丙组每天能缝制7件上衣或11条裤子;丁组每天能缝制6件上衣或7条裤子。现在上衣和裤子要配套缝制(每套为一件上衣和一条裤子)。问:7天中这4个小组最多可缝制多少套衣服?

分析:不能仅按生产上衣或裤子的数量来安排生产,应该考虑各组生产上衣、裤子的效率高低,在配套下安排生产。

我们首先要说明安排做上衣效率高的多做上衣,做裤子效率高的多做裤子,才能使所做衣服套数最多。

一般情况,设A组每天能缝制a1件上衣或b1条裤子,它们的比为在安排A组尽量多做上衣、B组尽量多做裤子的情况下,安排配套生产。

设甲组生产上衣x天,生产裤子(7-x)天,乙组生产上衣y天,生产裤子(7-y)天,则4个组分别共生产上衣、裤子各为6×7+8x+9y(件)和11×7+10(7-x)+12(7-y)(条)。依题意,得

42+8x+9y=77+70-10x+84-12y,

令u=42+8x+9y,则

显然x越大,u越大。故当x=7时,u取最大值125,此时y的值为3。

答:安排甲、丁组7天都生产上衣,丙组7天全做裤子,乙组3天做上衣,4天做裤子,这样生产的套数最多,共计125套。

说明:本题仍为两个未知数,一个方程,不能有确定解。本题求套数最多,实质上是化为“一元函数”在一定范围内的最值,注意说明取得最值的理由。

点击显示
上一篇:小学六年级奥数题――不定方程 答案
下一篇:六年级奥数下册:第一讲 列方程解应用题 习题解答
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
热门文章
最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •   小升初数学列方程解应用题3_六年级-查字典奥数网
     
    请输入您要查询的关键词

    小升初数学列方程解应用题3

    2009-08-27 15:52:59     标签:列方程解应用题

    14.3 列不定方程解应用题

    有些应用题,用代数方程求解,有时会出现所设未知数的个数多于所列方程的个数,这种情况下的方程称为不定方程。这时方程的解有多个,即解不是唯一确定的。但注意到题目对解的要求,有时,只需要其中一些或个别解。

    例10 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推)。男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分。如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?

    解:设该班有x个男生和y个女生,于是有

    4x+3.25y=3.6(x+y),

    化简后得8x=7y。从而全班共有学生

    在大于30小于50的自然数中,只有45可被15整除,所以

    推知x=21,y=24。

    答:该班有21个男生和24个女生。

    例11 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分。小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分。问:小明至多套中小鸡几次?

    解:设套中小鸡x次,套中小猴y次,则套中小狗(10-x-y)次。根据得61分可列方程

    9x+5y+2(10-x-y)=61,

    化简后得7x=41-3y。

    显然y越小,x越大。将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5。

    答:小明至多套中小鸡5次。

    例12 某缝纫社有甲、乙、丙、丁4个小组,甲组每天能缝制8件上衣或10条裤子;乙组每天能缝制9件上衣或12条裤子;丙组每天能缝制7件上衣或11条裤子;丁组每天能缝制6件上衣或7条裤子。现在上衣和裤子要配套缝制(每套为一件上衣和一条裤子)。问:7天中这4个小组最多可缝制多少套衣服?

    分析:不能仅按生产上衣或裤子的数量来安排生产,应该考虑各组生产上衣、裤子的效率高低,在配套下安排生产。

    我们首先要说明安排做上衣效率高的多做上衣,做裤子效率高的多做裤子,才能使所做衣服套数最多。

    一般情况,设A组每天能缝制a1件上衣或b1条裤子,它们的比为在安排A组尽量多做上衣、B组尽量多做裤子的情况下,安排配套生产。

    设甲组生产上衣x天,生产裤子(7-x)天,乙组生产上衣y天,生产裤子(7-y)天,则4个组分别共生产上衣、裤子各为6×7+8x+9y(件)和11×7+10(7-x)+12(7-y)(条)。依题意,得

    42+8x+9y=77+70-10x+84-12y,

    令u=42+8x+9y,则

    显然x越大,u越大。故当x=7时,u取最大值125,此时y的值为3。

    答:安排甲、丁组7天都生产上衣,丙组7天全做裤子,乙组3天做上衣,4天做裤子,这样生产的套数最多,共计125套。

    说明:本题仍为两个未知数,一个方程,不能有确定解。本题求套数最多,实质上是化为“一元函数”在一定范围内的最值,注意说明取得最值的理由。

    点击显示
    上一篇:小学六年级奥数题――不定方程 答案
    下一篇:六年级奥数下册:第一讲 列方程解应用题 习题解答
    推荐文章
    猜你喜欢
    附近的人在看
    推荐阅读
    拓展阅读
    相关文章
    热门文章
    最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •