[高级难度真题]第2000个数_六年级-查字典奥数网
 
请输入您要查询的关键词

[高级难度真题]第2000个数

2010-04-18 09:50:36     标签:工程问题

解析:显然1要染黄色,2=1+1也要染黄色,

3=1+2,

4=1+3=2+2,

5=1+4=2+3,

6=1+5=2+4=3+3,

7=1+6=2+5=3+4,

8=1+7=2+6=3+5=4+4,

9=1+8=2+7=3+6=4+5,

11=1+10=2+9=3+8=4+7=5+6.

可见,1,2,3,4,5,6,7,8,9,11均应染黄色。

下面说明其它自然数n都要染红色。

(1)当n为大于等于10的偶数时,

n=2k=4+2(k-2)。

由于n≥10,所以k≥5,k-2≥3,2(k-2)与4均为合数,且不相等。也就是说,大于等于10的偶数均能表示为两个不同的合数之和,应染红色。(1)当n为大于等于13的奇数时,n=2k+1=9+2(k-4)。

由于n≥13,所以k≥6,k-4≥2,2(k-4)与9均为合数,且不相等。也就是说,大于等于13的奇数均能表示为两个不同的合数之和,应染红色。

综上所述,除了1,2,3,4,5,6,7,8,9,11这10个数染黄色外,其余自然数均染红色,第k个染为红色的数是第(k+10)个自然数(k≥2)。

所以第2000个染为红色的数是2000+10=2010.

点击显示
上一篇:[中级难度真题]拆分
下一篇:[中级难度真题]求奇数之和
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
热门文章
最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •   [高级难度真题]第2000个数_六年级-查字典奥数网
     
    请输入您要查询的关键词

    [高级难度真题]第2000个数

    2010-04-18 09:50:36     标签:工程问题

    解析:显然1要染黄色,2=1+1也要染黄色,

    3=1+2,

    4=1+3=2+2,

    5=1+4=2+3,

    6=1+5=2+4=3+3,

    7=1+6=2+5=3+4,

    8=1+7=2+6=3+5=4+4,

    9=1+8=2+7=3+6=4+5,

    11=1+10=2+9=3+8=4+7=5+6.

    可见,1,2,3,4,5,6,7,8,9,11均应染黄色。

    下面说明其它自然数n都要染红色。

    (1)当n为大于等于10的偶数时,

    n=2k=4+2(k-2)。

    由于n≥10,所以k≥5,k-2≥3,2(k-2)与4均为合数,且不相等。也就是说,大于等于10的偶数均能表示为两个不同的合数之和,应染红色。(1)当n为大于等于13的奇数时,n=2k+1=9+2(k-4)。

    由于n≥13,所以k≥6,k-4≥2,2(k-4)与9均为合数,且不相等。也就是说,大于等于13的奇数均能表示为两个不同的合数之和,应染红色。

    综上所述,除了1,2,3,4,5,6,7,8,9,11这10个数染黄色外,其余自然数均染红色,第k个染为红色的数是第(k+10)个自然数(k≥2)。

    所以第2000个染为红色的数是2000+10=2010.

    点击显示
    上一篇:[中级难度真题]拆分
    下一篇:[中级难度真题]求奇数之和
    推荐文章
    猜你喜欢
    附近的人在看
    推荐阅读
    拓展阅读
    相关文章
    热门文章
    最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •