数论之整数拆分练习19_奥数数论问题_奥数知识点-查字典奥数网
 
请输入您要查询的关键词

数论之整数拆分练习19

2011-06-03 16:29:18     标签:整数拆分

数论之整数拆分练习19

若干只同样的盒子排成一列,小明把42个同样的小球放在这些盒子里然后外出,小聪从每只盒子里取出一个小球,然后把这些小球放到小球最少的盒子里去,在把盒子从新排列了一下。小明回来,仔细查看,没有发现友人动过小球和盒子。问:一共有多少只盒子?

分析:设原来小球数最少的盒子里装有a只小球,现在增加到了b只,但小明发现没有人动过小球和盒子,这说明现在又有了一只装有a个球的盒子,这只盒子原来装有a+1个小球,

同理,现在另有一个盒子里装有a+1个小球,这只盒子里原来装有a+2个小球。

依此类推可知:原来还有一个盒子里装有a+3个小球,a+4个小球等等,故原来那些盒子里装有的小球数是一些连续自然数。

现在这个问题就变成了:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?

因为42=6×7,故可将42看成7个6的和,又:

(7+5)+(8+4)+(9+3)

是六个6,从而:

42=3+4+5+6+7+8+9

一共有7个加数;又因为42=14×3,可将42写成13+14+15,一共有3个加数;

又因为42=21×2,故可将42写成9+10+11+12,一共有4个加数。

解:本题有三个解,一共有7只盒子,4只盒子,3只盒子。

点金术:巧用假设和推理把已知和未知联系起来。

点击显示
上一篇:数论问题之整数拆分:例题讲解
下一篇:数论之整数拆分练习18
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关文章
热门文章
最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •   数论之整数拆分练习19_奥数数论问题_奥数知识点-查字典奥数网
     
    请输入您要查询的关键词

    数论之整数拆分练习19

    2011-06-03 16:29:18     标签:整数拆分

    数论之整数拆分练习19

    若干只同样的盒子排成一列,小明把42个同样的小球放在这些盒子里然后外出,小聪从每只盒子里取出一个小球,然后把这些小球放到小球最少的盒子里去,在把盒子从新排列了一下。小明回来,仔细查看,没有发现友人动过小球和盒子。问:一共有多少只盒子?

    分析:设原来小球数最少的盒子里装有a只小球,现在增加到了b只,但小明发现没有人动过小球和盒子,这说明现在又有了一只装有a个球的盒子,这只盒子原来装有a+1个小球,

    同理,现在另有一个盒子里装有a+1个小球,这只盒子里原来装有a+2个小球。

    依此类推可知:原来还有一个盒子里装有a+3个小球,a+4个小球等等,故原来那些盒子里装有的小球数是一些连续自然数。

    现在这个问题就变成了:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?

    因为42=6×7,故可将42看成7个6的和,又:

    (7+5)+(8+4)+(9+3)

    是六个6,从而:

    42=3+4+5+6+7+8+9

    一共有7个加数;又因为42=14×3,可将42写成13+14+15,一共有3个加数;

    又因为42=21×2,故可将42写成9+10+11+12,一共有4个加数。

    解:本题有三个解,一共有7只盒子,4只盒子,3只盒子。

    点金术:巧用假设和推理把已知和未知联系起来。

    点击显示
    上一篇:数论问题之整数拆分:例题讲解
    下一篇:数论之整数拆分练习18
    推荐文章
    猜你喜欢
    附近的人在看
    推荐阅读
    拓展阅读
    相关文章
    热门文章
    最新文章
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •