四年级奥数题及答案:填数问题
1.填数
将1~9这九个数字分别填入下面算式的九个□中,使每个算式都成立.
分析①审题.在题目的三个算式中,乘法运算要求比较高,它要求在从1~9这九个数字中选出两个,使它们的积是一位数,且三个数字不能重复.
②选择解题的突破口.由①的分析可知,填出第三个乘法算式是解题的关键.
③确定各空格中的数字.由前面的分析,满足乘法算式的只有2×3=6和2×4=8.如果第三式填2×3=6.则剩下的数是1,4,5,7,8,9,共两个偶数,四个奇数.由整数的运算性质知,两个
样填:(答案不是惟一的,这里只填出一个).如果第三式填2×4=8,则剩下的数是1,3,5,6,7,9.其中只有一个偶数和五个奇数,由整数的运算性质知,无论怎样组合都不能填出前两个算式.
解:本题的一个答案是:
2.角
数出右图中总共有多少个角.
分析 在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:
4+3+2+1=10(个).
解:4+3+2+1=10(个).
相关问题:
四年级奥数题及答案:填数问题
1.填数
将1~9这九个数字分别填入下面算式的九个□中,使每个算式都成立.
分析①审题.在题目的三个算式中,乘法运算要求比较高,它要求在从1~9这九个数字中选出两个,使它们的积是一位数,且三个数字不能重复.
②选择解题的突破口.由①的分析可知,填出第三个乘法算式是解题的关键.
③确定各空格中的数字.由前面的分析,满足乘法算式的只有2×3=6和2×4=8.如果第三式填2×3=6.则剩下的数是1,4,5,7,8,9,共两个偶数,四个奇数.由整数的运算性质知,两个
样填:(答案不是惟一的,这里只填出一个).如果第三式填2×4=8,则剩下的数是1,3,5,6,7,9.其中只有一个偶数和五个奇数,由整数的运算性质知,无论怎样组合都不能填出前两个算式.
解:本题的一个答案是:
2.角
数出右图中总共有多少个角.
分析 在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:
4+3+2+1=10(个).
解:4+3+2+1=10(个).
相关问题: